
Weak blind quantum signature protocol based
on entanglement swapping

Minghui Zhang* and Huifang Li

School of Electronic and Information, Northwestern Polytechnical University, Xi’an 710129, China
*Corresponding author: nikkoch@163.com

Received June 26, 2015; revised September 11, 2015; accepted September 12, 2015;
posted September 17, 2015 (Doc. ID 243853); published October 19, 2015

In this paper, we put forward a weak blind quantum signature scheme based on quantum entanglement swapping
of Bell states. Different from the existing quantum signature schemes, our scheme can offer two-step verification
security services to ensure the validity of the verification. In order to guarantee the unconditional security of
the scheme, the quantum key distribution protocol and one-time pad encryption algorithm are employed in
our scheme. Besides, the entanglement swapping of Bell states mechanism enhances the security of
verification criteria. The proposed scheme has the properties of nonforgeability, nonrepudiation, blindness,
and traceability. © 2015 Chinese Laser Press
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1. INTRODUCTION
Quantum cryptography has received enormous attention in re-
cent years for its proven unconditional security. In general,
quantum cryptography includes quantum key distribution
(QKD), quantum secret sharing, quantum secure direct com-
munication, and quantum authentication. The purpose of a
quantum signature, as part of quantum authentication, is to
avoid the signature, and the initial message is forged from
the internal dishonest participants or the external attackers;
further, the signer cannot deny the signature.

Diffie and Hellman [1] first introduced the digital signature
in 1976, which came to play a critical role in authentication,
data integrity protection, and other cryptography fields.
However, traditional signature schemes can easily be broken
with the emergence of quantum computers because the secu-
rity of these protocols depends on some unproven computa-
tional complexity, such as discrete logarithm or factoring
problems. Therefore, in order to guarantee the security even
against attackers with unlimited computational power, it is
necessary to study quantum analogs of digital signature
schemes. Gottesman and Chuang [2] proposed the first quan-
tum signature protocol based on the one-way function. Zeng
and Keitel [3] presented a pioneering arbitrated quantum
signature scheme. Since then, many quantum signature
strategies have been proposed [4–10].

However, the ordinary quantum signature mechanism is not
a very suitable encryption approach for the E-payment system
and E-voting system in which the message owner’s privacy
should be protected. For instance, in an E-voting system, a
ballot needs to be signed by the manager, but the content
of the ballot could never be revealed to the manager. In blind
signature schemes, the signer generates the signature yet
knows nothing about the content that he/she has signed.
The blind signature scheme can be divided into the weak blind
signature and the strong blind signature on the basis of

whether the message owner can be traced by the signatory.
Wen et al. [11] proposed the first quantum weak blind signa-
ture scheme in 2008. However, Naseri [12] had shown that the
protocol in its original form cannot fairly complete the task of
a blind signature. Afterward, Su et al. [13] proposed a blind
signature scheme based on two-state vector formalism with
100% efficiency. But Yang et al. [14] studied some possible at-
tacks against Su et al.’s scheme and proposed an enhanced
signature scheme. However, Zhang et al. [15] found the dis-
honest signer can reveal 25% of the message in Yang et al.’s
enhanced scheme. Almost simultaneously, Su and Li [16]
pointed out that Yang et al.’s enhanced protocol also has a
loophole of participant attack. Soon after that, Wang and
Wen [17] presented a fair blind signature scheme based on
quantum mechanics. He et al. [18] pointed out this protocol
cannot, unfortunately, satisfy the property of nonforgeability.
After that, Zou and Qiu [19] further analyzed the security of
this protocol and put forward a more subtle attack strategy.
Recently, Yin et al. [20] proposed a blind signature scheme
with χ-type entangled states, and Wang et al. [21] presented
a weak blind quantum signature scheme based on GHZ states.
Khodambashi and Zakerolhosseini [22] proposed a sessional
blind signature based on quantum cryptography. But Su and Li
[23] found that the signature protocol will cause the key infor-
mation leakage. Wang et al. [24] also pointed out there are two
security leaks in this protocol.

In this paper, we put forward a weak blind quantum signa-
ture protocol based on the entanglement swapping [25] of Bell
states. We subject two photons, each of them, respectively,
belongs to their own Bell states, to a Bell measurement by
which the other two photons also become entangled. Thus,
we can utilize the correlation of quantum entanglement swap-
ping to act as the judge foundation in the verification phase.
Moreover, the employment of QKD protocol [26] and one-time

324 Photon. Res. / Vol. 3, No. 6 / December 2015 M. Zhang and H. Li

2327-9125/15/060324-05 © 2015 Chinese Laser Press

http://dx.doi.org/10.1364/PRJ.3.000324


pad encryption algorithm [27] ensures the unconditional

security of the scheme.
The rest of this paper is outlined as follows. In Section 2, we

will briefly introduce the local unitary operation and quantum
entanglement swapping mechanism. Then, we give a weak
blind quantum signature scheme based on the entanglement
swapping of Bell states in Section 3. In the next section, we
demonstrate the security of our protocol. A conclusion is
given in Section 5.

2. PRELIMINARIES
Generally, a practicable weak blind quantum signature proto-
col should meet the following requirements:

(a) Nonforgery. Any counterfeits of the true signature will be
discovered in the verification phase. That is, nobody can
create the true signature except for the signer.
(b) Nonrepudiation. The signature cannot be denied by
the signer, and the original message cannot be denied by the
message owner.
(c) Blindness. The signer cannot learn the content of the
message that he/she has signed.
(d) Traceability. The message owner can be traced by the
signer when a dispute investigation happens.

Before giving our scheme, we will briefly introduce the
local unitary operation and the entanglement swapping of
Bell states. The four Bell states can be denoted as

jψ�i � 1
���

2
p �j0ij1i � j1ij0i� � 1

���

2
p �j�ij�i − j−ij−i�; (1)

jψ−i � 1
���

2
p �j0ij1i − j1ij0i� � 1

���

2
p �j�ij−i − j−ij�i�; (2)

jϕ�i � 1
���

2
p �j0ij0i � j1ij1i� � 1

���

2
p �j�ij�i � j−ij−i�; (3)

jϕ−i � 1
���

2
p �j0ij0i − j1ij1i� � 1

���

2
p �j�ij−i � j−ij�i�; (4)

where j�i � 1∕
���

2
p

�j0i � j1i�. Let σ1 � j0ih0j � j1ih1j,
σ2 � j0ih0j − j1ih1j, σ3 � −j1ih0j − j0ih1j, and σ4 �
j1ih0j − j0ih1j as four local unitary operators, which can be
used to perform unitary operation on one photon in a Bell
state to form the secret information. One can see that
σ1jψ−i � jψ−i, σ2jψ−i � jψ�i, σ3jψ−i � jϕ−i, and σ4jψ−i �
jϕ�i. Suppose that Alice and Bob share Bell states jψ−

ABi
and jψ−

CDi. Alice possesses the particles A and C, and Bob
keeps the particles B and D. Thus, the following equations
hold:

σ1jψ−

ABi ⊗ jψ−

CDi � jψ−

ABi ⊗ jψ−

CDi �
1
2
�jψ−

ACijψ−

BDi

� jϕ�
ACijϕ�

BDi − jψ�
ACijψ�

BDi − jϕ−

ACijϕ−

BDi�; (5)

σ2jψ−

ABi ⊗ jψ−

CDi � jψ�
ABi ⊗ jψ−

CDi �
1
2
�jψ�

ACijψ−

BDi

− jψ−

ACijψ�
BDi − jϕ�

ACijϕ−

BDi � jϕ−

ACijϕ�
BDi�; (6)

σ3jψ−

ABi ⊗ jψ−

CDi � jϕ−

ABi ⊗ jψ−

CDi �
1
2
�jϕ�

ACijψ�
BDi

� jϕ−

ACijψ−

BDi − jψ�
ACijϕ�

BDi − jψ−

ACijϕ−

BDi�; (7)

σ4jψ−

ABi ⊗ jψ−

CDi � jϕ�
ABi ⊗ jψ−

CDi �
1
2
�jϕ−

ACijψ�
BDi

− jψ�
ACijϕ−

BDi − jψ−

ACijϕ�
BDi � jϕ�

ACijψ−

BDi�: (8)

Thus, when the local unitary operator acted on the Bell state
jψ−

ABi is σ1, Alice subjects particles A and C to a measurement
in a Bell basis. If she finds them in the state jψ−

ACi, then qubits
B and D measured by Bob will be in the Bell state jψ−

BDi. If
Alice observes any other Bell states for particles A and C,
particles B and D will also be entangled correspondingly.

3. DESCRIPTION OF THE PROPOSED
SCHEME
In fact, quantum signature schemes containing a trusted arbi-
trator are shown to be applicable and useful, especially with
reduced requirements on the trustworthiness of the arbitrator
[28]. Our scheme involves four parties: Alice, Bob, Charlie,
and an arbitrator. The message owner, Alice, transforms
the initial message into the blind message; Bob is considered
the signatory who signs on the blind message without know-
ing the content of the message; Charlie is regarded as the veri-
fier who investigates the authenticity of the signature and the
original message with the assistance of the arbitrator. The ar-
bitrator controls the flow of the scheme and provides a useful
message to help determine whether the signature is true. Now
we will explain our blind quantum signature scheme from the
following four stages.

A. Initial Phase
Step 1: Charlie shares the secret key kAC with Alice and kBC
with Bob. The arbitrator shares the secret key kA with Alice,
kB with Bob, and kC with Charlie. All these secret keys will be
obtained via the proved unconditional security QKD protocol.

Step 2: The arbitrator prepares two Bell state sequences
with length of n� l, both in the state jψ−i, that is, the total
state is jψ−

ABi ⊗ jψ−

CDi, where the subscripts A, B, C, and D
express the four different photons. In order to further illus-
trate the scheme, we denote the single photon sequence as

Wj � fw1
j ; w

2
j ;…; wn

j ;…; wn�l
j g �j ∈ A;B; C; D�: (9)

Then, the arbitrator delivers the sequence WA to Alice and
WC to Bob; he retains the sequences WB and WD.

Step 3: In order to prevent possible attack strategies, par-
ticipants need to check the security of the communication
channel. The arbitrator randomly selects l sampling particles
from WB and WD and measures them in the Bell basis. Then,
the arbitrator publishes the positions of these particles and
the measurement basis to Alice and Bob. If the arbitrator’s re-
sult is jψ−

BDi or jϕ�
BDi, Alice and Bob will use the basis X

(otherwise use the basis Z). After that, Alice and Bob declare
their measurement results to the arbitrator. Finally, the arbi-
trator calculates the error rate by the outcomes of three
parties according to Eq. (5); if the error rate exceeds a certain
threshold, then this communication process is revoked.
Otherwise, we proceed to the next step.
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B. Blinding Phase
Step 1: Alice prepares an n bit classical initial message
sequence, m � fm�1�;m�2�;…;m�n�g�m�i� ∈ f0; 1g�.

Step 2: Alice selects the corresponding unitary operators to
act on the photons A according tom. As shown in Table 1, for
each i ∈ f1; 2; :::::; ng, if m�i − 1�m�i� � 00, Alice will choose
the operator σ1 and encode it into 2-bit message 11. One can
see the other correspondences as well in Table 1.

Step 3: Alice creates the secret messagesM � EkAC �m0� and
M� � EkA�m0� by encryptingm0 in terms of the secret keys kAC
and kA with a classical one-time pad algorithm.

Step 4: Alice sends the secret blind message M to Charlie
and M� to the arbitrator.

C. Signing Phase
Step 1: Charlie decryptsM with kAC and obtains the blind mes-
sage m0. Then, he decrypts m0 to acquire the corresponding
unitary operators; thus, he can deduce the original message
m. Similarly, the arbitrator can learn the unitary operators
by decrypting M� with kA. For instance, if m0 � f10000111g,
then the operators Alice utilized is σ � fσ2; σ4; σ3; σ1g, and
Charlie can learn that m � f0j1100g.

Step 2: The arbitrator performs the Bell measurement on
the rest n particles in WB and WD and records the result as
jCi � fjC�1�i; jC�2�i;…; jC�n�ig with jC�i�i ∈ fjψ�

BDi; jψ−

BDi;
jϕ�

BDi; jϕ−

BDig. At this point, the photons A and C have
collapsed a certain Bell state due to the property of quantum
entanglement swapping. The measurement basis Alice and
Bob should use depends on jCi and the operator as shown
in Table 2. Let the basis correspond to a classical bit, respec-
tively, i.e., X to “0,” Z to “1,” then the arbitrator encrypts the
classical bits with kA and kB via classical one-time pad algo-
rithm, respectively, and sends the encrypted message to Alice
and Bob.

Step 3: Alice and Bob decrypt the secret message with kA
and kB to get the measurement basis. Then Alice and Bob
measure their respective photons sequence and record their
results as jAi � fjA�1�i; jA�2�i;…; jA�n�ig and jBi � fjB�1�i;
jB�2�i;…; jB�n�ig with fjA�i�i; jB�i�ig ∈ fj0i; j1i; j�i; j−ig.

Step 4: Alice encrypts jAi in terms of kA with quantum one-
time pad encryption algorithm and gets the secret message

MA � EkA�jAi�. Bob encrypts jBi with kB by the same encryp-
tion algorithm and obtains the signature S � EkB�jBi�. Then,
Alice and Bob transmit MA and S to Charlie, respectively.

D. Verification Phase
Step 1: After having received S and MA, Charlie creates the
ciphertext V � EkC �S;MA� by encrypting S and MA with kC
and then sends V to the arbitrator directly.

Step 2: The arbitrator decrypts V with kC to get S and MA.
Then, the arbitrator decrypts MA with kA to obtain jAi and
decrypts S with kB to get jBi.

Step 3: The arbitrator generates a verification parameter λ,
which will be helpful in making a decision about the authen-
ticity of Bob’s signature. When the measurement results of the
three parties �jAi; jBi; jCi� meet the rules in Table 3, the arbi-
trator considers that the signature is true and sets λ � 1;
otherwise, he sets λ � 0. After that, the arbitrator obtains
the cryptograph V 0 � EkC �S; σ; λ� by encrypting S, σ, and λ
with kC ; then, he sends it back to Charlie.

Step 4: Charlie decrypts V 0 with kC to get S, σ, and λ. Only
when λ � 1 can Charlie accept Bob’s signature and go on to
further the verification process. Now Charlie possesses two
group unitary operators: one is deduced from the secret mes-
sage M , and the other comes from V 0. Charlie compares two
objects for reference equality and, if they are equal, accepts
the signatures S and the initial message m; otherwise, he
rejects them.

4. SECURITY ANALYSIS AND DISCUSSION
In the following, we will prove that our scheme has the
properties of noncounterfeit, nondisavowal, blindness, and
traceability.

A. Impossibility of Forgery
First, the application of both QKD protocol and a quantum
one-time pad encryption algorithm guarantees the nonforge-
ability of the scheme. We assume that Alice is a dishonest par-
ticipant and attempts to forge Bob’s signature; however, it is
impossible because Bob’s signature associates with kB, which
is generated via an unconditionally secure QKD protocol,
which is secretly held by Bob and the arbitrator. Random
guesses would have only succeeded about half of the time

Table 1. Initial Message is Converted into Blind

Message

m�i� m�i − 1�m�i� Operator Blind Message m0

0
1 01 σ2 10
1 11 σ4 00
0 10 σ3 01
0 00 σ1 11

Table 2. Criteria of Measurement Base

Selection

Operator jCi Basis

σ1 or σ4 jψ−

BDi or jϕ�
BDi X

jψ�
BDi or jϕ−

BDi Z
σ2 or σ3 jψ−

BDi or jϕ�
BDi Z

jψ�
BDi or jϕ−

BDi X

Table 3. Validation Rules of the Scheme

Operator jCi AC’s state fjAi; jBig
σ1 jψ−

BDi jψ−

ACi fj�i; j−ig or fj−i; j�ig
jϕ�

BDi jϕ�
ACi fj�i; j�ig or fj−i; j−ig

jψ�
BDi jψ�

ACi fj0i; j1ig or fj1i; j0ig
jϕ−

BDi jϕ−

ACi fj0i; j0ig or fj1i; j1ig
σ2 jψ−

BDi jψ�
ACi fj0i; j1ig or fj1i; j0ig

jϕ�
BDi jϕ−

ACi fj0i; j0ig or fj1i; j1ig
jψ�

BDi jψ−

ACi fj�i; j−ig or fj−i; j�ig
jϕ−

BDi jϕ�
ACi fj�i; j�ig or fj−i; j−ig

σ3 jψ−

BDi jϕ−

ACi fj0i; j0ig or fj1i; j1ig
jϕ�

BDi jψ�
ACi fj0i; j1ig or fj1i; j0ig

jψ�
BDi jϕ�

ACi fj�i; j�ig or fj−i; j−ig
jϕ−

BDi jψ−

ACi fj�i; j−ig or fj−i; j�ig
σ4 jψ−

BDi jϕ�
ACi fj�i; j�ig or fj−i; j−ig

jϕ�
BDi jψ−

ACi fj�i; j−ig or fj−i; j�ig
jψ�

BDi jϕ−

ACi fj0i; j0ig or fj1i; j1ig
jϕ−

BDi jψ�
ACi fj0i; j1ig or fj1i; j0ig
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for each bit. Therefore, the total success rate is almost zero
when the information bit sequence is quite long. Even if
Alice can obtain kB by some certain methods, the attacking
strategy is still unlikely to succeed. The application of quan-
tum entanglement swapping causes Alice and Bob’s measure-
ment results to depend on the arbitrator’s measurement
result, which is only known for himself. Because Alice cannot
know the arbitrator’s result, she cannot learn Bob’s outcome
as well. The correlations of the entanglement swapping of two
EPR pairs will be destroyed if Alice uses the wrong one to
replace Bob’s outcome.

Second, our scheme can resist the intercept-resend attack.
In Step 2 (in Section 3.1), the arbitrator delivers the photon
sequence WA to Alice and WC to Bob, respectively. If dishon-
est Alice attempts to intercept WC and resends the sequence
W 0

C to Bob, however, it is still inevitable that the attacking
tactic will be discovered by the arbitrator in Step 3 (in
Section 3.1). Thus, Alice can neither copy the qubits WC

nor learn the right measurement basis Bob used. That is,
the sequence W 0

C is not equal to WC . Further, the use of
W 0

C will make the error rate exceed the threshold.
Furthermore, our scheme adds an extra verification step to

determine the validity of the initial message. If the attacker
tries to forge Alice’s initial message, it is no doubt that the
attack can be found by Charlie by the comparison of two
group operators. The fact remains that nobody can counterfeit
Bob’s signature and Alice’s initial message for their own
interests without being detected.

B. Impossibility of Disavowal
Bob cannot deny his signature because his signature message
S contains the secret key kB, which is secretly kept by Bob and
the arbitrator. If Bob tries to deny his own signature, the ar-
bitrator just needs to decrypt the signature and investigate
whether the signature message associates with Bob’s secret
key kB. If so, the arbitrator considers that the signature has
been signed by Bob. Similarly, Alice also cannot disavow
her initial message because her initial message M contains
kA, which is secretly kept by Alice and the arbitrator. The ar-
bitrator can confirm whether the initial information belongs to
Alice by kA.

C. Blindness
It is obvious that the signer Bob cannot learn the content of
the original message in our signature scheme. Bob just needs
to measure the particles sequence WC in the basis X or Z and
then generate the signature with a quantum one-time pad
encryption algorithm.

D. Traceability
When Bob starts to suspect the message owner Alice’s mo-
tives, he can trace the identity of Alice with the assistance
of the arbitrator. Because the secret key kA is shared between
Alice and the arbitrator, Bob can trace the message
owner Alice according to kA and the parameters set
�MA; jAi; jBi; jCi; σ�.

5. CONCLUSION
In this paper, we present a weak blind quantum signature pro-
tocol based on quantum entanglement swapping of Bell states.
The proposed scheme adopts a two-step verification process

to guarantee the security, i.e., the tasks of verifying the
authenticity of the original message and the signature are
carried out simultaneously. Through the security analysis
discussed above, we confirm that it is impossible for anyone
to counterfeit the signature in our scheme. Meanwhile,
the signer cannot deny the signature, and the message
owner cannot deny the initial message. The proposed
scheme can also maintain the inherent characteristics of
the weak blind quantum signature scheme, i.e., blindness
and traceability.
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